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ABSTRACT

The solutions of the equation u, = (um)xx for x€R, 0 Ct<T, m> 1,
where u(x,0) is a nonnegative Borel measure that vanishes for x > 0 (and
satisfies a growth condition at =-%®) exhibit a finite, monotone, continuous
interface x = Z(t) that bounds to the right the region wvhere u > 0. We
perform a detailed study of {: initial behaviour, waiting time, behaviour
as t + =, For certain initial data the solutions blow up in a finite time

*
T': we calculate T in terms of u(x,0) and describe the behaviour of ¢

»
as t ¢+ T .

AMS (MOS) Subject Classifications: 23I5K65, 76505, 35B40

Key Words: flows in porous media, interfaces, blow-up time, waiting time,
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"l A SIGNIFICANCE AND EXPLANATION

She- porous media equation (PMQ
N
(PME) u, = (u")xx, \(x\,t-)\ewr\x (0,T)
—
where m > 1 and T > 0 are constants and I is an 1nteE?iI‘tn~~!E;hnl been
used as a model for a number of physical phenomena: heat diffusion at high
temperatures, boundary layer theory, spread of a thin layer of viscous
material and mainly the flow of gas in a porous medium. , In all these
applications u 2 0. //)

/‘/

C» The most distinctive characteristic of the solutions to (PME) as compared

with the linear heat equation _nt_s_u%§>>is the finite speed of ptopagationgﬁ_:

if the solution u(x,t) is supported in a bounded interval a < x < b at
time t = 0 so it is for every time t > 0: u(x,t) =0 for x ¢ (a‘, 2y
If we call ,(t),g,(t) the best bounds a’',b' at time ¢t we obtain two
monotone curves x = C,(t), x = cz(t) cal}gd interfaceés that bound the
support of the solution.

“1In this paper the properties of the interfaces are studied in terms of

the initial data, x,0): it is assumed that u(x,0) » 0 and that
u(x,0) = 0 for x> 0 Dbe herwise completely general and the study
concentrates on [ = cz(t). The behaviqur of {(t) for very small times and

very large times is shown to depend only on. the behaviour of u(x,0) near the

interface and near == respectively and precime growth estimates are given.
is studied and estimated
Sometimes the interface is

Also the occurrence of a blow up in finite time

*
and the behaviour of g(t) as t + T described.

stationary for a certain time - yand then begins to move: we characterize
the existence of a positive waiting time and give bounds for it.
Completing what was already known these results provide a satistc ry

picture of the interfaces for the solutions of (PME) when I = R.

The respongibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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THE INTERFPACES OF ONE-DIMENSIONAL FLOWS IN POROUS MEDIA

. Juan L. V‘lqu.l“)
Accession Tor
NTIS GRA&I |
INTRODUCTION DTIC TAB
Unannouncend ]
We consider the initial-value problem for the porous media equation Justificntion - ]
' gy = Wy, in Que=RmRx(0,T), O<TC™ —_— i
(®) By.
u{x,0) = uo(x) for xR, Distri R
ribution/ I

where = > 1 is a physical constant and u, satisfies the assumptions: Availability Co-dés ’
Avail and/or J

(H1) is a nonnegative Borel measure in R, u, ¥ 0
L) 0 ’ Dist Specia '
- =l
(n2) sup R =1 / dug(x) < =,
RrR1 Ix|<R
(13) ug vanishes on (0,») .

The equation appears in a number of applications, the most typical being the flow of
gas through a porous medium, where u stands for the dengity of the gas. This motivates
the assumption (H1). Assumption (H2) is justified in view of the existence theory: in

) fact Bénilan, Crandall and Pierre (9] have constructed continuous weak sclutions to the N-
dimensional analogue: (Py) u = Au-, u(x,0) = uo(x), W > 1, in a maximal strip

Qe = o x (0,7), 0 < 2* = T'(ug) < @, under the condition

-ow 2o
; (n2') sup R / alugl(x) < »
: R Ix]) <R

that reduces if ¥ = 1, ug ? 0, to (H2). Whenever 'l" < ® we say that the solution

{ . .
(piv. Matematicas, Universidad Autonoms, Madrid 34, Spain and School of Mathematics,
University of Minnesota, Minneapolis, Minnasota, 55455. This work was done while the

author was a Pulbright Scholar 1962-1983,

Sponsored by the United States Army under Contract No. DAAG29-@0-C-0041.
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blows up in finite time. They also prove that for nonnegative solutions a necessary and
sufficient condition for global existence, i.e. T ==, ig
-ne =2
(0.) usr TV a0,
Ree |x|<r

Also Aronson and Caffarelli (4] showed that every continuous, nonnegative weak
solution of u, = Au" in a strip Q, T > 0, has an initial trace u(x,0) which is a
locally bounded measure satisfying the growth condition (H2').

Recently Dahlberg and Xenig [11) proved that the continuous, nonnegative distribu-
tional solutions of (Py) in Q,, T > 0, are unique. PFor another uniqueness result cf.
[9) and its references. BEarly work on this subject goes back to Kalashnikov (14].

In view of these results (H2) is an optimal growth condition for the initial values
of (P).

In this paper we are interested in describing the free-boundaries that appear in (P):
indeed one of the most appealing features of (P) with =m > 1 is the fact that vhen Yg
vanishes cutside ¢ compact interval then the support of u(e+,t), t > 0, is also compact.
This is called the finite propagation property and has been described by Oleinik,
Kalashnikov and Czhou {17] in their 1958 paper where the existence, uniqueness, regularity
and finite propagation for the solutions of (P) were first discussed at length.

The above considerations lead us to introduce the assumption (H3). We show that the
solutions of (P) under the assumptions (H1)-(H3) vanish for large enough x > 0 for any
fixed time 0 ¢ t < T . We define the outer right interface (or free boundary) of u as
the curve x = ((t), where

{ g(t) = sup{x : u(x,t) >0} if 0 < ¢ < 'y
(0.2)
£(0) = suplx : [ dug > 0} .

(x,®)

Then § : [o,-r') + (0,») is a continuous, nondecreasing function and there is a time t'.




0<t <1, called waiting-time, such that &(t) = ¢(0) if 0 <ce< ¢, ¢ ectie’,r)

~ and Z'(t) >0 1f ¢ <t <1'. All these results were wall-known when uy € L'(m), of.
(1), [10], [16], [19]. 1In Section 1 we review these and other known results that we shall
need and ghow that they continue to hold under the present conditions.

Por simplicity we shall refer in the sequel to x = {(t) as the free boundary or
interface. Remark that other interfaces say also appear: outer left interface and inner
interfaces, cf. [19]. We shall make a brief comment on them at the end of the paper.

After Section 1 on preliminaries we estimate the blow~up time in terms of the growth
of ”x dug(x)| as x + ® in Section 2.

:ccuon 3 is devoted to the waiting-time: we give necessary and sufficient
conditions on u, for a positive waiting-time to exist as well as lower and upper
estimates of it.

In Section 4 we construct a class of global self-gimilar solutions behaving as
x + - 1ixe Ollx|™), =1 ¢ a ¢ 2/tm = 1),

In Section S we prove that the bshaviour of the interface for small time depends only
on the behaviour of Uy near 0. By comparing with the explicit solutions of Bection 4
we give rates of growth for small t for various classes of initial data.

A similar study is performed in Section 6 for large t. Now the behaviour of (
depends on the behaviour of u, for large negative x. In particular if wug(x) ~ lxl°

\J

foran a1 -1 <a<2/(m~-1) as x + = thenas t + =, [(t) ~ ¢t with

Y=(2-atm=-1"",

Finally in Section 7 we study the behaviour of ([(t) as ¢t * '1" vhen 'r' is
finite. 1In particular we show conditions under which ((t) ¢+ » ag ¢t ¢ 'l". We also
study the blow-up set, i.e. the set of points x € R for which u(x,t) + = ag ¢t ¢+ 'l".

An interesting question not dealt with here is that of determining if

L S

[
g e c'(o,r'). The only point where this may not be true is t . In (S) Aroneon,

1

Caffarelli and Kamin exhibited a class of initial data for which { is C  smooth.

y Recently Aronson, Caffarelll and the author (6) have proved that for roughly the

Lt aa—

~3-
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camplementary class of initial data ('(t+) is discontinuous at ¢t = t.'. Self-similar

solutions starting smoothly after a positive waiting time are constructed in (15].
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1, PRELININARIES

1. 1. Bxis 4 of 1y .
We recall here the results that we need from (9):

THEOREM A. Lst v, bse a Borel measure satisfying (H2). there
time T' € (0,%] for which a solution u can be defined in (0, such_that

() 1 - *
(1) ueco,e") Ll m) N L (10,1 )X
(1)  ulx,e)(1 + |x)2)~ V(=) o x':oc(- x (0,7°))
(111) Por ¥ e Cy(mx [0,T')) we have

k 4
{ [ tue, + u‘tn)dxdt = [ ¥(x,0)8uy(x) .

Moreover if 'l'. < ® (in which case we say that the solution blows up in finite time)

(iv) U= {llute,e) ], == o
tire

Bere above X denotes the space of functions £ € L}oe(l) such that

o Bt
1
(1.1 g1, sup R [ [flax < =
Rr Ix|<R
for some (= all) r > 0, equipped with the norm lll-lll,. {91 contains further

information on the solutions: uniqueness, ... In particular it is important to remark
that the solution u with initial data uy > 0 can be obtained as the limit of
solutions u, with smooth, compactly supported initial data. Also P. Sacks proved that
u is continuous in QT..

Por uniqueness and comparison purposss we shall use the following result of Dahlberg
and Kenig (11]:
THEOREM B. let uy(x,t), u,(x,t) Dbe con el c a
Qp = R X (0,7), T>0, such that
1) u, and u, are golutions of u, = (u™) in D'(Q.)s

-Se
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ii)  the initial treces u,(x,0), uy(x,0) (that exist thanks to (4]) satisfy
uy(x,0) € uy(x,0) ag measures.
Then uyix,t) € uy(x,t) jn Q. o
1.2. Pro [} 1 .
The following properties are valid for solutions with smooth initial data in L'(l)
and remain valid for general initial data by approximation.

] . m-1 - u
PROPERTY 81. (i) (u '), 2 et HE and (11) w, > =T e 4 D'(Q!.).

PROPERTY S2. If u, Ais a function guch that (uf ') >0 in D'(R) then
ta(x,)™ "), >0 in D'(M for every t> 0.

PROPERTY 83. Given two solytions u,; with initial data uo,\;o we have for svery
t > 0 for which both are defined

(1.2) | tutx,) = uix,£)) @x € [ (dug(x) = dug(x)), ,

where (°) = max(+,0).

We remark that Property S3 implies in particular the pointwise comparison result; cf.
for Property 81 (3], for Property 82 (1, Lesma 2] and for Property 83 (8], [9]. For the
next property we refer to our work [19].

PROPERTY 84 (Shifting-Comparison lLemma). lat u,u be solutions of (P) under conditions

(B81)=-(a3). I1¢ uo,uo satisfy
L2 - -
(1.4) | dugtx) < [ aup(x)
x x

for every x € R then for every t > 0 where both are defined we have

(1.5) [ ulx,t)ax ¢ [ ulx,t)ax .
x x

COROLLARY 81. Under the above assumptions if [(t),l(t) are the interfaces defined in

(0.2) and ¢t > 0 is as above then
(1.6) g(t) € g(e)

-6
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NOTATION. We shall use the notation ug 4 uy or u, >y meaning that (1.4) holds.

Conclusion (1.5) is then written as ul(e,t) 4 ;(°,t)-
1.3. Some explicit solutions.

The following solutions will play an important role in the sequel as the models with
which we compare other solutions. FPirst we consider the solutions wi(x,tiM) of (P)

with w(x,0;M) = M6(x) where M > 0 and § is Dirac's delta function. They are given

by
- I
2 o1
vy -1
“.n vt = ¢ * (c- s 2/?-+1))+ )
t
cf. [7], where C and M are related by
1
z(::) 2(m+ 1)\ w1\
{1.8) Mm=ac , with a = pegrar )n(-_1,—)

the right interface of w(x,tiM) is given by x = r(t), where

w1

=1 1

/z

(1.9) ,m.(h&n__lc) Himety | o W
J _.—1
1 mt+

. + 1

wion o, - (alet )™ yml gy T

The solutions w(x,t:M) serve as a model of solutions with I.‘-dnu, ct. (19}, Por
solutions that blow up in finite time we ghall use as model the family =(x,t;T,C)

defined in gr, T>0 by

- 2

w1 n~-1 . x
(1,10) z(x,tIT,C) = (T = t) Gateo 7/ =1 +c), .

C can be any real number. If C > 0 g is always positive. If C < 0 g vanishes in the

(*) B(e,e) is muler's beta function.




reglon x| € r(T - t) with r Q&efined as in (1.9). 1In this cass we can consider the

restrictions
(1.11) s_(x,t)T,C) = g(x,t)T,C)H(=~x)
(1.12) 2,(x,t17,C) = 2(x,t1T,C)H(x)

where H(x) = 1 if x>0, H(x) =0 if x< 0. If C<0 g, ,=z_ are solutions of (P)
and in fact the right-interface of z_ is the curve x= ~r(T?T ~ ¢t), 0 < t<T,

We shall write =(x,t;T), zt(x,tv'r) instead of z(x,t:;T,0), :t(x.t:T,O).
1.4. Properties of the interface.

Let u be the solution of (P) under conditions (H1), (H2), (H3) and let [(t) be
its interface as in (0.2). We have
PROPERTY I1. G(t) is finite and mondecreasing for 0 < t < T .
PROOP. It is nondecreasing since Property 8t, (ii) implies that if ui(x,t) > 0 and
t>t, then ulx,t) > 0.

To see that it is finite we remark that by Properties (H2), (H3) there exist
constants C,,C, > 0 such that

- | 1d )
(1.13) [ augtx) < cytix) + cz)"' .
.4

hence there exists T, > 0 such that uy 4 z_(x - C2,0:Ty) and the shifting comparison
lemma implies that
(1.14) tlt) €cy; for 0 < t<T, .

It is clear from Theorem A (iv) that T » Ty+ In case > Ty We can repeat the
argument above up to any tise T < 'y using the fact u € x.;oc([o,'l'.).X). (m]

We can now define the waiting-time t' as in the Introduction. We have ([(t) =0
if 0<t<t and Ce) >0 if t' <t <T". we shall show in Section 3 that t is
finite. We recall that the local velocity of a solution is defined in the set
Lad

{tx,t)sulx,t) > 0} by Vix,t) = =(z2—, o™ ), cf. eg. (1. If &' <T° we have




PROPERTY 12. G ec'it’,7*) and for 0 < t < T' the limit

(1.15) lim Vix,t) = V(L(t),t)
x*g(t)
u(x,t)>0

exists and equals §'(t+) if ¢t > 0. reover

B *30 in Dt ,

(1.16) g (t) + =+ Nt 4

therefore o' (6)t™ ™' 1g nondecreasing ana '(t) >0 if > ¢,

PROOP. (1.15) was proved in {1] and (16] for solutions with continuous, compactly-
supported initial data; ¢ € C' is proved in [10] and for (1.16) cf. [10] and (19]. The
essential of the proofs remains unchanged using the properties already quoted and the
remark that Theorem A, (ii) and Property 81, (i) imply that for every 0 < t < '

V(x,t) is a locally bounded function of x. o

>0 in D'(R) then ((t) is s

PROPERTY I3. If wu, is a function such that (ul ') .

convex function of ¢, 0 < t < t'.

PROOF. By Property 82 V(x,t) is a nonincreasing function of x for every t > 0. This
means that V(x,t) » V({(t),t) = k > 0, therefore if k > 0 the "constant-velocity
front”

1

-1 - PSR
— kik(t - &) - (x = T(N],)

(1.17) u=(

is a solution of (P) in R x (§,T) such that @ € u. Hence for every t > t©
(1.18) Tlt) > Lle) + (et - ©) .
This means that { is convex. We remark that when ¢ = t' we take Z'(t) to mean

T (). u}

-

-9-
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2., BLOW-UP TIME

In this section we estimate the blow-up time ‘1" = 'r'(u) of any solution u of (P)
such that u, satisfies (A1) and (B2)~(H3) is not necessary - in terms of Lj = L(u,)
defined by

L=
(2.1 Ly = 1m sup Ixl ™ M ,

Ix|+e

vhere M(x) = Ifx dug(x)|. Then 0 € L, <®. It was proved in (9] that T <® if and
only if Lg > 00 as we said.

We begin by showing that T' depends only on the behaviour of u, for very large
{x|: for any a € R we define n: as the solution of (P) with initial value
ug(:nl) = uo(x) * x((==~,a)), i.e. u;(xu) coincides with u, on (-=,a] and vanighes
on (a,®). Likewise we define ug for some b € R as the solution of (P) with initial
value ug(va) = uo(x) * x((b,®)). Then we have

PROPOSITION 2.1. All the solutions u:, a € R, have the same blow-up time !':. Likew.

the family (u:} has a cosmmon blow-up time '!';. Finally
-* * *
(2.2) T (u) = .in(f1'T2) -
PROOF. By the maximum principle, cf. (1.2), we have for every a' < a, b < b':
(2.3.a) ™ (w < ) ¢l
(2.3.b) (w < Twd) <t .
The fact that 'l"(u:) = 'l"(u:.) is a consequence of (1.2) and Theorem A, (iv): (1.2)

implies that for t < T'(u:) u: > u:

+ and ] (u: - ui. ),dx is bounded by a constant
that does not depend on t. Therefore Illu:(',t)|||1 is bounded as long as
lllu:,(nt)llli is. By virtue of Theorem A (ii), (iv) this implles that
) = Tl
. 2 . 2
The same argument proves that T (up) = T (upe).
To end the proof we have to show that if T = min(Ty,T;), then u is Gefined for

1
0 <t <¢<T. Por this we take an € > 0 and prove that the supports of u.(°,t) and

-10=




u:('.t) donotmeet for 0 < t < T -€¢ if a << 0 and b > 0. Assuming that this is
true we conclude as follows: u(x,t) = u:(x.t) + uf(x.t) is then the solution to (P) in
the domain Qr_c with initial data u,; - uy ° x((a,b)). Prom (1.2) we deduce that
u(x,t) is defined in Qr-c and that
(2.4) [ utx,t)ax < [ Six,t)ax + [ duyix)
(a,b)
for any 0 < t <T ~- €. Now let € + 0 ¢to get 'r'(u) >T.
We control finally the supports of u: and ug. Let us begin with u:: by Theoream
A (11) there exists a constant C > 0 (that depends on €) such that for every a < 0,
0<t<T-€¢ and x ¢ -1
m+1
- -1
(2.5) [ wlts,tras < cixI™ .
x

Now we cbserve that if we set v _(x,t) = z_(x - a/2,t1T) with
(2.6) I

m+ 1
then (2.5) implies that u:(x,O) < v,(x,0) for every a < =1 so that Corollary 8! of
Section 2 implies that u:(x,t) =0 for every X > a/2 and 0 ¢ t € min(7,T - €). Let
now N be the least integer 2 (T =€)/t and set u = u:, with a' = -2%, 1¢
T-€< 1, N=1 and we have proved that u(x,t) vanishes in (-1,®) x (0,T - €). If
T =€ > T we can repeat the argument at t = T with v=g_(x ~ l"‘,t - UT) to
conclude that u(x,t) = 0 in (a'/4,%) x (0,min(21,T - €)). By induction it follows

that ui(x,t) = 0 for x > -1 and 0 < t <T - € in any case.

L]
In the same way we can prove that ug. with b' = 2' and NR' defined similarly

to W vanishes in (-=,1) x (0,T - €)., This completes the proof. a




et - o o e

The preceding result allows to reduce the study of the blow-up time to solutions

satisfying (B1), (H2), (H3). In this case

[ a)

{2.7) Lo = 1im sup x| =1 / dug(x) .
xbon x

The main result of this section is

THEOREN 1. T 4g infinite If and oply 4f Lo = 0. If Ly > 0 we have

‘l'- . 9-
(2.8) L—-:'- <T < F“T
0 0
L] 1
were T~ (157) ks mg o -Vl B LT o (1.
In cage L, 1 actually the limit as x + = or as x + » then
(2.9) K W5

PROOF. Py virtue of Proposition 2.1 we can assume that ug 20 on (0,®).
Let € > 0. There exists a conastant C = Ce > 0 such that

Mix) < (1,° + g)h'(-")/(-ﬂ

it x < =C. Therefore there exists a constant XK > 0 puch
that ug(x) < =_(x - K.Oﬂ'c) vhere T, " Tallg + €) 1-.. It follows then from Property
84, §2, that T > T, (and that for every 0 < t < T, u(*,t)< z_(+ = K,tiT,)). Latting
€ + 0 we obtain the left-hand inequality of (2.8).

In case Ly is not only a 1lim sup but the limit as x + == of the expression in
(2.7) we can repeat the argument now to find a K < 0 such that Yp(x) > z_(x = K,0r7_ )
vhere obviously T_, = T_(L - €)' ™. It follovs that 7 < T, hence as € + 0, T < T,L)™™,

We prove next the second inequality of (2.8): we choose & point x ¢ =1, move the

mass in [x,0] at time t = 0 to the point X and consider the solution

u(x,t) = wix - X,t)M(X)) with initial data Up(x) = M(x)8(x = X): we have for every

x€eR t>0
1 (
(2.10) Bx,t) = (2=t )ﬂ[ 2m')2 = -"3_'- ’]"-:_1
. ulx, mim + 1)t c- X t x + o

-12-
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There is a sequence X, * = gsuch that, given ¢ > 0,

Il(in) > (!.o - c)l;nl(.”)/(r') if n is large enough, n > . Let us set

3]

2

. T . (1 +¢)
(2.11) tt -ﬂ“‘ _ c)._, ]
‘%« Mo
for all large n > n, we have:
=11
- w1 w1 172, =

(2.12) c-ll(xn) t:c > (1 + €) I:nl .

Hence for some C = C_ > 0 we have with ;".‘n'"’“;

(2.13) ™z, 0 > clx_[2ee]’

if =1 ¢ x < 0. S8ince by construction we have Il(;u)C(x - xn) 4 ug(x) we conclude that

for every t < 'r', ;(',t) 4 u(*,t) and in particular

- 0
(2.14) [ uix,trax > [ u(x,t)ax .
-1 -1

In case T > t, for an € > 0 we can use (2.13) to estimate the right-hand side of
-

{2.14) and let n + @ to conclude that the integral [ \l(x,tc)dx =, a
-1

contradiction. Hence T < t, and letting € + 0 the result follows.

REMARK. The accuracy of estimate (2.8) depends on the ratio

:! l#‘l-i ) 1-1
(2.15) Ya -'!-- (-— 1) * ’(I° 12

Ve approaches 1 as = + 1. Indeed Vare © 1 +0(elge) as € + 0. On the contrary

u, 9rows like 2® s mee.y, =,

-93=-
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3. ON THE WAITING TIME

In the sequel u(x,t) is the solution of (P) under assumptions (HY), (H2), (H3).
Without loss of generality we set U[(0) = 0. We discuss in this section the existence of
a positive waiting time and give estimates for it in terms of ug.

In [2) Aronson constructed an example of solution with smooth initial data having a
positive waiting time that he explicitly computed. To be specific if u:-‘(x) = eo.zx
for =-v/2 € x € %/2, uf‘(x) = 0 otherwise, he proved that t' = (m=-1)/2m(n + 1) and
at that time the second derivative (u:"(x,t))xx blows up at x = 1%/2, Knerr discussed
in (16] (under the simplifying assumptions that u, is continuous, positive in a bounded
interval (a,b), a < b, and zero outside) the wvaiting time t' in terms of the beshaviour
of pyix) = :—:—1 w™ ! near the endpoint b: thus if Po(x) € c(b - x)2  for some
C>0 andall x near b then t > 0; on the contrary if py(x) > C(b - x)* with
C,x as before and a < 2 then t' = 0.

In (S] Aronson, Caffarelli an Kamin prove the following result (adapted to our
notation):

W™ 1 and assume that

THEOREM C: let u be a solution of (P), let p=

m-1

uy © Lloc(l) and that po(x) = plx,0) =0 for x> 0, If po(x) = uxz + o(xz) as
x 40 and pyix) < sz in B for some constants a,f > 0 then

2(m + 1)B 2(m + 1)a °

COROLLARY A: Under the above hypotheses if a« = 8 then
,
2(m + 1)a

(3.1)
(3.2) t .
In this section we give a necessary and sufficient condition for the existence of a
-
positive waiting time as well as an estimate of t in terms of M(x). Notice that under

hypothesis (H3) M(x) = 0 if x > 0 and

0
(3.3) Mix) = [ dug(x) if x <O .
x

-14-




THEOREM 2. 1I) t. is tive if and only if

-l
(3.4) 1im sup M(x) (x| e,
x+0
_x1
i
I1) More precigely if B = -us M(x) x| < ® then
x<
T, . o
(3.%) TSt S
B B
!_h_gg'l'-,o-n the stants Theorem 1.
el
III) £ A = lim Inf M(x)ix] ™' is positive then
x40
T
* a
(3.6) t € —=,
Alr‘

4m

COROLLAXY 3.1. If u, is guch that the supremum of M(x)|x| is_ob a

limit when x ¢ O then

(3.7 ¢ . :!.
™!
REMARKS. 1) Slnce for pyix) = bx? we have
= A o
a1 . Bz 1 . o] =1
(3.98) nx) = (=) as1° b Ixl .

under the hypothesis po(x) < sz the left-hand inequality of (3.5) gives precisely
(2(m + 1)8)"" < t'. Aleo Corollary A is implied by Corollary 3.1, the conditions being in
our case far leas restrictive.
2) ror the accuracy of (3.5) see Remark at the end of Section 2.
PROOF OF THEOREM 2. 1) Assume that B < ™, We compare u(x,t) with

G(x,t) = z(x,t:7). It le immediate that ug< G 1f t < T,8'™, herefore we conclude

-8




from Theorem 1 that '1" > T and from the Shifting Comparison that for 0 < t < 1,
C(t) € T(t) = 0, hence t°' > T. This proves (3.5), left.
For the upper bound in (2.5) we compare ui(x,t) with the solution
ulx,t) = wix = X,t/M(X)) for an ¥ ¢ 0. Since it is clear that u { Uy we have for

every 0 < t < 'l"o T(t) < g(t). But since

=10
(3.9) T =%+ o™ ™! {
we conclude that (C(t) >0 Lif ¢ > c;('")ﬁl'”ll()'t)'("”. This being true for every 1
%X < 0 we can take the infimum of the expression in the right-hand side and obtain thus
the desired inequality.

I) 8ince, because of assumption (H2) B is finite if and only if

lim sup M(x)|x| is finite, (3.4) follows from (3.5).

”:II) We first recall that any solution ut x,t) with initial pressure .
;o(x) - axz + o(xz) and such that Py x) < axz has a waiting time given by (3.2)
(Corollary A).

Now for every € > 0 the solution ; such that ;o(x) - uxz it x ¢z ¢0 and

;o(x) = 0 otherwise, satisfies ;°4 uy if

1

— 1

3 (3.10) (A't)?(.—.'—"\r‘n--".aﬁ
i : m+ 1t/ m+ 1

~% -
‘ and x_ 1s small enough. Therefore t ¢t = (2(m+ V) . 0-(A - c)‘q. Letting

€+ 0 we get (3.6). 0
We end the section by applying our results to a family of solutions already discussed
in (5):
EXAMPLE. We let m = 2 and consider the solutions u{x,t:8) with initial data
{% [(1 - 8)sen’x + Osen'x] if x e [-7,0] «
(3.11) ug(x) = ’

0 otherwise

with 0 < 8 < 1. Notice that since m = 2 po(x) - ‘mo(x).




s e

1) We estimate the waiting time wvhen 0 = 1. In this case the results of (5] imply
that 0.3174 < t'. We ocbtain more accurate estimates using Theorem 2: since the maximum

of ll(u)lul'3 for - < x < 0 is attained at the point x = -1,449951 with a value

B = 0.0769886 it follows from (3.5) that

*
(3.12) 0.3608 < ¢t < 1.4432 .
2) Now we study the range of 08's for which formula (3.2), i.e. in this case
* 1
(3.13) tTsh-o

is valld. Since for x = 0 we have M(x)x 3 = (1/6)(1 - 8) + (1/30)(48 = 1)x? + o(x%),
if we let © = gup(6 @ [0,1]: (3.13) holds) we have the lower estimate 8 > 0.25 as in
(S]. But the upper estimate in (3.5) allows us to conclude that for 6 near 1 (3.13)

does not hold. Indeed this happens for every 06 » 0.88... . Therefore
(3.14) 0.25 < § < 0.88... .

)T~




4. MORE SELP-SIMILAR SOLUTIONS

To give exact rates of growth of the interface ags t ¢t ® or t =0 we need a
suitable family of models that we construct in this section.
For every a, =1 < a < 2/(m - 1), we let va(x,t) be the solution of (P) with

initial condition

@+ DIxI® 1f x<o
(4.1) vc(x,o) =
0 if x>0,
Since the map u * Tu defined by
(4.2) Tu(x,t) = ku(Lx,Tt)

where k,L,T are given positive constants, transforms solutions of u, = (“-)xx into new
solutions if k"‘l:.2 = T and since Tva(x,O) = vc(x,O) if kLa = 1 we conclude from the
uniqueness of the solutions of (P) that for every L > 0 we have
-a 2~ 1
(4.3) w (x,8) = L % (Lan2 0Ny,
a a
for every x € R, t > 0. 1In particular if we fix t > 0 and then choose L such that

Lz-a(r”t = 1 we deduce that v, can be represented in the form

(4.4) v xit) = tana(xt-Y) in Q=R x (0,®) ,

with Y= (2 - a(m -1))"1

> 0. Therefore v is a self-similar solution.
It is easy to see that fa(E) = vu(i.l) is a nonnegative solution of the second-

order differential equation

(4.5) (EM)(E) = avyf(E) - YE£' () (* = fz)
on the whole line £ € R, such that f(f) » o(£°) as £ + = ana f(E)IEI-° + (a+ 1) 7

as & + -=, The fact that there exists a unique solution of (4.5) with such behaviour as
|E| + ®» follows from the existence and uniqueness of solutions of (P).

By Property I.1 the free boundary Ca of Y is finite. If we let

(4.6) nu - Ca(") ’
t'.
[ 3]

4
that Ha(x) - lea ' (Ix] + 1) ! gives by means of the comparison argument of

then 0 < "a < » and ca(t) =n "a depends only on a and m; in fact remarking
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P,

Property I.f
-Y
(4.7) "c < -r_ .
REMARKS, 1) Barenblatt [7] considered solutions of the form t‘!(xtq) to solve the
problem
ug = " if x>0, t>0,
(4.8) ul(x,0) = 0 if x»0,

a(0,t) = dts if ¢ >0.
This leads to the study of equation (4.5) with Y '21 (1 ¢ &(m~ 1)) and side conditions
£(0) = ¢ and f(®) = 0. He considered the case = > 1, § 2 0, ¢ > 0.
A detailed study of the problem

(4.9)
£(0) =U >0, £f(£) bounded as [ + =

{ (£")7(E) + YEL*(E) = 6£(E) for £> 0
with m > 1 and independent paramsters Y,§ € R is made by Gilding and Peletier in (12},
[13] (where references to related works can be found). In case U > 0 they prove that
there exists a solution of (4.9) with compact support if Y >0 and 2y + 8§ > 0 and this
solution is unique. 1In the particular case of (4.5) where a,Y,§ are related as above
the conditions mean a > -2, In this way we recover the solutions 'vc(x,t) restricted to
the quadrant {x > 0,t > 0}, Bounded positive solutions of (4.9) can be cbtained under
our conditions for =2 < a < 0. Since the equation (4.5) is invariant under the
transformation N * -n we can recover so the left part, (x < 0,t > 0), of va(x,t) it
a < 0.

But once we have the general existence and uniqueness theory for (P) our approach
gives a very simple proof of the existence and properties of vu(x,t) that relies on the
use of the scaling-invariance of the equation.

2) when a=(m- 1"', Y =1, we obtain the explicit solution

1

(4.10) wix,t) = ["—;-l clet ~ x)+]""
-19-
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with a suitable c > 0. This is called a constant-velocity front since {(t) = ct and

n
m-1

- w-')* = ¢ whenever w > 0.

3) Por ad (m~ ‘l)"1 the initial pressure is a convex function:
(»“(x,l))--"),m > 0 a.e. Therefore the same holds for every t > 0, i.e. 'l is
convex and the free boundary n a( t) is convex.

4) The limit case a = -1 jig represented by the solutions with finite mass, i.e. we

define

(4.11) w_q(x,t) = wix,t11) as in definition (1.7)
and then

(4.12) Ny = Cpe as in (1.9).

Using again the transformation T we see that for ¢ > 0 the functions

2y ay,, =(m1 )Yxt-Y

(4.13) (x,t) = c" 't flc )

w

a,c

are solutions of (P) with initial data v, c(x,O) = cvc(x.t)). Their interface is given
’

by x = nu'c(t) where

- w1 Y
(4.14) na'c(t) na(c t) .

Clearly (4.14) holds also for a = -1,

-20=




PROES

v

S. BEHAVIOUR FOR SMALL ¢
We begin this section by showing that the behaviour of ((t) as t + 0 depends only
on the behavicur of M(x) as x + 0,

LEMMA S.1. Let u,(x,t), uy(x,t) be two solutions of (P) with initial data

u?(x),ug(x). mass_functions M,(x),My(x) and interfaces l:‘(c),:z(t) re vely. If
M (x)
(5.1) lim = ¢, 0<c<ce
o My(x)

then for every € > 0 there exists T >0 such that if 0 < ¢ <7

(5.2) e+ 0™ e > g0 > gte - 0™ o .

PROOF. For every § > 0 there exists xg > 0 such that M,(x) € (c + G)ll.l(x) it

X, ¢ x < 0. Now we use the transformation T, cf. Section 4, on the solution ;2 with
initial data

0
(x) if x, < x <0
(5.3) Pix) = { 6

0 otherwvise .

m+1 ~h ~ ~F ~0
We put X =L = {1 + 8) so that T = {1 + §) and deflne u .T“z'“o-T"z‘ The

~h * L] -
support of u, is contained in the interval [x;,0]), where x, = x (1 + 8) 's xs. Also
~t ~ ~e  ~0
M (x) > Hz(x) for every x, i.e. u, > u,.

We now consider the solution U(x,t) with initial condition
uo(x) if x < g
(5 4 ~® L ] 0
.4) Uo(x) un(x) if s < x <
0 otherwise .
It is clear that U, > ug, hence their interfaces Z(t).Cz(t)- satisfy
z(t) > Cz(t) in their common interval of definition. But since Ug(x) = 0 in the

L ] ~'
interval ["6"6] for a certalin time Tt > 0, U(x,t) coincides with u.(x,t) if x> xg

~®
and 0 < t € v, hence 2Z(t) = § (t).
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To prove the first inequality of (5.2) we have yet to compare 'E; and Ci. Por this
we use again T, nowwith k= (c +8)(1 +8), L=14+ 8 and T = (c + 6).-'(1 + 6)-".
We obtaln a solution ;1 = Tu, such that
(5.5) Rylx) = (e + O (1 + 8)x) > W((1 + Bx) > i tm)
Lie. > U, therefore T (t) > T (t) = Z(t) > L(t) if 0 < t < T. Choosing &> 0
such that (1 + 6)‘”(«: + 5)-’ € (c + c)-‘ this implles the desired inequality since
' [ACEEAIN 8
The second inequality can be obtained by reversing the roles of u, and u,. o
The solutions 'a,c constructed in Section 4 are used to give precise growth rates
for {(t) when t ls small:

THEOREN 3. let for some 8, 0 < 8 < (m+ 1)/(m~ 1)

(5.6) 1im sup H(x)lxl-a =c
x70
with 0 < c €< e, Thenas t *+ 0
(5.7) lc(r"" < lim gup K(!:)t.Y < n“c(--'W
where a=8-1, y= (2 -a(m=-1)"" n, (defined in (4.6)) and Y > 0 Jepend only B
and m.

If c is_the limit of M(x)lxl-s as x4 0 then

c(---‘I)Y

(5.8) lim g(e)e) = n

t+0

’ PROOP. The right-hand inequality of (5.7) and (5.8) follow from Lemma (5.1) and formula
x (4.14) for the interfaces of w_ .
! a,c
To prove (S5.7)-left we observe that there exists a sequence X, * 0 such that
n(xn)lxnl-s +Cc as n * ®, We may assume that c > 0, if not there is nothing to
prove. We consider the solutions \':n(x,t) = wix - "n"'"""n”‘ It is clear that for
every n, ug > u,(x,0), therefore we have

4

n+1
(5.9) g(t) > n_.mix )" 't Ix,l -

£

Now if we take a small €, 0 <€ < c, we have M(x ) 2 (c - t:)lxnle for all large

=22~
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n? LI We remark now that the function

(5.10) gly) =ay’ -y, Ocy<ew O0cpct,
takes on a maximum value at v, = (Au)‘/“-u)z
1 =
.1 - —t .
(5.11) g(yu) o Yy
=l )

Applying this result to (5.9) with A =n_(c - ™ ™' and y=Bm=-1/m+ 1) ana

setting yu = x. we find that there exists a sequence {tn }_  such that tn e +0 as
’

n *+ * and

- m1 Y
(5.12) C(tn'c) > A{e €) tn,c)
Y{m+1)
where )\ = (ﬂ:—ﬁl n_,) c(yB(m + 1", Letting € + 0 we obtain (5.7)-left. O

REMARKS. 1) The first results on [(t) for small t seem to be thoge of [16] where it

1/2 -
is proved that <((t) = 0(t™ /%) if ug e L (m).

The case u, € L'(l) is studied in (19): it is proved that F(t) < n_‘(ll--"t)v-w|
vhere M = lual1 and also that ZI(t)t =1, 0 as t * 0. The assumptions u, © Pm),

1 < p<*® are also discussed.
2) If we let 8 2 2 in (5.6) and ¢ < * then t, > 0 cf. Section 3. If B < 2
and ¢ >0 then t, = 0,

3) If B =0 the limit of M(x) as x t+ 0 always exists and (5.8) applies.
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6. BEHAVIOUR A8 t + =

In this section we assume that u is a global solution, i.e. 'r' = ®, and study the

behaviour of {(t) for large t. The results parallel those of Section 5 but now the

values of M(x) as x + ® are the only ones that matter:

LG 6.1. Let uyu; be two qlobal solutions of (P) with initial dsta u} uj, mass

functions M,,M;, and interfaces (,.l, respectively. If

(6.1)

M, (x)

lim ———v=
M, {x)

b=

e, 0<Cc<e™

then for every € > 0 there exists ce > 0 such that

(6.2)

-1 1
C‘((c + €) t) + < > Cz(t) > !1((1: -€) ¢t) - C. -

PROOF. Por every € > 0 there exists x, such that for x < X <o,

My(x) € (c + M (x) = H (x), where W

1 is the mgss of ;1 = Tu; and the constants in

the transformation are k=c¢c + €, L= 1, T = (c + c).-’. Therefore we have for every x

(6.3)

My(x) € Mylx + x) .

It follows that

(6.4)

~ w1
‘z“’" < :1(‘:) + "‘e' = ¢'((c + €) t) + lxel .

Putting C e ™ Ix e' we obtain the first inequality. The second is similar.

REMARK 1. As in preceding sections Xnerr [16) obtalined the first results: Uader

simplifying assumptions on the initial data, cf. Section 3, he proved that

g(t)

- O(tv(.”)). In (19] very precise results are obtained when u, @ t.‘(l) (and

satiasfies (H1), (H3)): 1t is proved that

(6.5)

L o
1 1
D ooe ™. c_u‘" . M=l
==, =1
11) ('(t)t‘" - ! and

"+

1

1

1 a1 -1
L) g(e) =c M e 4 g =M [ xugix)ax

I

1
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X, the center of mass, can be finite or -=. Notice that (6.5) implies that for every

solution Z(t) grows at least like tV(-").

Using the solutions L in combination with Lemma 6.1 we obtain the following

growth rates:
THEOREM 4. Let for some B, 0 < B < (m+ 1)/(m - 1)

(6.6) lim sup H(x)!xl-s = ¢
”O.

with 0 € c <=, Then as t *+ *

At VY (m=1)Y
c c

< lim sup (Bt ¥ < ng .

(6.7)

wvhere o,Y,A and n, Aare as in Theorem 3. If moreover ¢ is the limit of H(x)lxl-s

as x + ~-= then

(6.8) lim g(t)t ¥ = nac("""

tre

PROOF. It is completely similar to that of Theorem 3, only changing throughout ¢t + 0,
x+0 into t +=® x + -®,
REMARKS. 2) If we allow 8 =2 in (6.6) then if ¢ > 0 there is blow~up in finite
time. In case B8 > 2, ¢ » 0, no solution of (P) exists. If B = 0 the limit of M(x)
as x * -® alyays exists, finite or infinite.

3) The case uy € LP(R), 1< p < = is treated in [19]. Notice that u, € LP(Rm)

implies M(x) = o(|xI®) witn 3-2-%-1 it p<=, B=1 if p=w,




7. APPROACHING A BLOM-UP

In this section we assume that the blow-up time ' is finite, i.e. that
mt

w1 does not tend to 0 as x goes to =-e=. UWe begin by describing the

M(x) |x|
different possible behaviours of the interface [(t) as ¢t ¢ . Let
* [ ]
(7.1) Lt = limG(t), v = 1lim g'(t) .
- *
tiT t4T
Both limits exist, either finite or infinite. The four cases that may occur are:
* * - * -«
(I) ¢ =0, i.e. t =T and f(t) =0 for 0 < t <T. Example: =z_(x,t;T ).
* [ ]
(II) 0 <2 <» 0 Cv ==,
* *
(III) 0 <L <®, v =e, Example: z_(x,tiT",C) with C < 0.
*

*
(IV) A =o, v ==,

* *
Remark that because of (1.16) £ > 0 implies v >0 and £ = e implies

An example of type (II) is easily constructed as follows: let u be the solution
with initial data
(7.2) ug(x) = z_(x + 1,0;7) + mé(x) ,
where M,T > 0. If T is small as compared with T, u equals exactly z_(x + 1,¢t;T) +
wix,tjM) in Q,, has blow-up time T and ([(t) = r,(t) for 0 <t<?T.

On the hand it follows from Theorems 1 and 2 that (I) happens when the limit of

Mix) x| "(®*1)/(m=1) o ists as x + == and equals B.

Examples of type (IV) will follow from Proposition 7.1 below.

We introduce now a useful concept, that of blow-up gset I = I(u):
(7.3) I={xem: ulxt) +* as toT ).

H Note that the limit of u(x,t) as ¢t ¢ 'l" exists for every x € R since

u, > ~w/(m + 1)t, i.e. n(x.t)ti/(.ﬂ) is nondecreasing in t, in QT.- The following

holds:

i PROPOSITION 7.1. [ is an interval heginning at -=.

-
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PROOF. Iet x be a point not belonging to . PFor simplicity we take x = 0. Since
lim u(0,t) < ® as t + T there exists C > 0 such that ul0,t) €C for T /2 < C <
'r'. We want to prove that no x > 0 belongs to E. This ls obvious if
£, = 0 hence in the sequel we assume that ([(t) >0 for t > 'r' -€ > -r'/z.

Conaider for ‘1" -€<t < 'r' the function pix) = -u"‘(x,t)/(l =1),p isa
continuous nonnegative function on the interval (0,Z(t)) such that p(0) < ¢,
PLI(E)) =0 and p, > -K where K= ((m+ 1)7°/2)"". ¥Now we take the parabola
pix) = a - (k/2)(x ~ 8)2 that passes through (0,c) and (Z(t),0), i.e. with
(7.4) u-!;-(:s*:—cz, "§'§’£°
It is easy to see that p(x) € p(x) 4in (0,L(t)), hence in particular
(7.5) EU1e) = -p_(L(E)) € = B_E(E)) = (KE(E) + c&(ed ') .
Integrating (7.5) from 'l" - € we conclude that ([(t),;'(t) remain finite as ¢t ¢ '!'..
Since the maximum of pi{x,t) in x in [0,l(t)] is less than a and a is bounded
for t + '1" we conclude that for every x > 0, x ¢ L. (]

We set b. = gup L. It is clear that -= ¢ b. < !,.. Moreover from the above proof
it follows

- L
COROLLARY 7.1. If b is finite then £ is finite. If also £ > b then v is

finite.
¥hen u, is nicely behaved at ~-= there is a siwmple formala for b'. Indeed if we

assume that the following limits exist:

- =t
(H2°) lim moix] ®'ery,, 0cpy <.,
xs-o

and

w1

m+1
(ne) u.-((!%’-) +x)=c, =w<cC+s,

b i 0
then we have
-27-
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PROFOSITION 7.2. b = c.

*
PROOP. (1) b. € c. Assume that ¢ < =, We ghall prove that for every c' > c, b € c¢'.

In fact there exists C, > 0 such that M(x) < Lol=x ¢ c.)(r!)/(-ﬂ) for every
x ¢ =C4. This means that by virtue of Property S3, §2,

- *
(7.6) | tulx,t) = z_(x = c', 3T )) dx < N' ¢ =

-

for avery 0 < t ¢ 7" where W' does not depend on t. Now since z_(x - c'.u'r') =0
for x > c' we deduce that

(7.7) | uix,t)ax € ®', OcgcT .
c'
This implies that c' > b' because of the following Lesma. Hence b. < c.
LEMMA 7.1. For every x5 < b' and every € > 0 we have
(7.8) lim | ulx,t)dx = = .

*
o Ix-x°|<t

PROOF. Since (“-1)xx » =K (see proof of Proposition 7.1) we have for every X, e R,
ulx,t) > ulxy,t) - (K/2)(x - "0)2 either for x > x5 or for x < x;. Hence
(7.9) { utx t)ax > (ulxget) - £ e .

lx-x°|<€

As u(xg,t) +  as t ¢ 7°  the result follows. w]

(ii) b' 2 ¢c. Arguing as above if c > -», for every c" < c there exists N" > 0 sguch

that

(7.10) | (z_tx = " ts7") - ulx,t)) ax S N" < @,

-

Now if b' ¢ c® this implies arguing as in Proposition 7.1 that u(x,t) is bounded above

in (c"',c%) x ('l"/2,'l") for any c"' e (B',c"). However lemma 7.1 applied to x_




-

Leen

implies that as t * 'l"

c.
L 2
(7.11) | zx-c",tiT )ax + =
*

b

contradicting (7.10). Therefore b' > ¢", hence b. > c. (w]
Under the above assumptions the type (IV) corresponds precisely to c = +=», If
¢ < 0 we have an interface of type (I) or (II): remark that in this case we can replace
the lim in condition (H4) by 1lim sup (and the same proof implies that
b' Cc<O0= l'). We remark finally that when ¢ = ~» the blow-up set [ is void: in

this case the sequence

)

(7.12) s_ = sup Ix]| w1

n J utx,t)ax
x<=1

must diverge as t, 'l" but the sup is taken at points X, * ==

It would seem that the blow-up merely concerns the set L. However, the next result
points out a global aspect:

Consider a solution u with initial data vy that blows up at time T > 0. Let
(uon} an increasing sequence of measures that converge to u, and let {un} the
corresponding solutions. Let (,% n be their respective free boundaries. We choose

Yy, %0 that u_ exists for all time 0 < t. We have

n
PROPOSITION 7.3. (1) For every (x,t) & Q, un(x,t) 4+ ulx,t) .
(ii) Por every 0 < t < T Cn(t) + g(e) .
(i1i) PFor every t > T cn(t) t+ = and c"‘(t) t e,

(iv) For eve X€eR t>T7T un(x,t) t -,
PROOF. (i) It is clear from the maximum principle that for every n, u < LI <u
whenever they are defined. Theorem B and Prop. 1.6 of [9] prove that the seguences
L] n L] 2 n
{un). ““n)x} and ““n)t) are uniformly bounded in L, (R x (0,T). Hence {(u'}

converges uniformly on compacts to a continuous solution u of u, = (u"')xx in Q.r. Its

.
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initial trace (that exists by [4]) u, necessarily satisfies u,, < Ug. Moreover u < u.
It follows from Theorem B, §2, that u = u.

(ii) Since obviously tn\'t) < cnﬂ(t) € g(t) whenever they are defined we have to
prove that for t < T u.lntn(t) Z g(t) » g(t). In fact if o(to) - c(to) - € for some
tg <T an € > 0 this can only happen at a polnt wvhere already moves:

t'(ty) = k > 0. Using the fact that &'(ty) = =p (L(t)it)) whers p = (a/(m = 1))u™"
we conclude that u(x,ty) > 0 for x near :(to). Since wu (x,ty) = 0 for every
x> cn(to) < o(to) we arrive at a contradiction with (1).

(1ii) This is the first interesting point. We know (Theorem A, (iv)) that
Illu(-.t.)lll1 +® ag t+T. Since u, tu it follows that for every n there exist
an integer ’n and a point (xn,tn) e Q'r such that
- 1A
(7.13) ’{ uy (x,6,)dx > e D™, e em w1

n
Pl

We consider now the solution u,(x,t) = w(x - x ,t - eumlxnlr‘). defined for

t > t . By Corollary 81 we have, since “jn pu, at time ¢,

1
wtt
(¢e) > e-(nlxnl)(t - tn) % if > .

(7.14) Cj
Mow fix t =T + T >T and let n+ = in (7.14) to obtain Cn(t)OO.
Prom (1.16) it follows that for every t > 0, T (t)t > (m + (L (t) = (0)). Hence
if t>T and n + = () >
(iv) Let p (x,t) = (W/(m - 1))u:". Since p, >0, (p,), . 2 ~((m+ 1~ ana
(pn)x(cn(t).t) = -c;(t) it follows from (iii) that for ¢ > T lim un(tn(t) -t,t)mo®
as n * ®, The conclusion \ln(l,t) + 0 for every x > 0 follows from the fact that
u, ls nondecreasing in x for x>0, t> 0. Aproof of this property using
Caffarelli's Reflection Principle is as follows: If we compare in & domain

D= (a,® % (0,% with a >0 the functions u (x,t) and Uplx,t) = u (2a = x,t) It




Py

follows from the maximum principle that u € u,. Mow given 0 < x, < x, and t >0
take a = 1/2{x, + x,) to conclude that un(xi.t) b un(xz,t).

To prove that un(x,t) +0 even for x < 0 we consider the solutions ;n with
initial data ';On = um-x(-,a) with a < 0. They approximate the solution ; with

9y = no'x(--.l). Since T = T we apply the above to conclude that un(x,t) ¢ @ for

every x > a, t > T. But “n‘“n‘

3=




8. OTHER INTERPACES

If u 1s a solution of (P) under conditions (H1)-(H3) and Up(x) = 0 for x < a
then an outer left-interface appears

(8.1) 14 (t) = Inf{x : ulx,t) > 0}, t>0.

left

The properties of ( are completely similar to those of Z(t). Since

left
ug € L‘(l) the asymptotic behaviocur as t + = is covered in [19].

Also an inner free boundary rln may appear: it is the part of the boundary T of )
Q= {(x,t)r xe®m, 0 < ¢t < v ana u(x,t) > 0} in QT' not contained in x = f(t) or

X = (t). As explained in [19]) it consists of an at most countable number of locally

left
Lipschitz arcs beginning at ¢t = 0. Cf. for other details [19]. :
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